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Abnraet. Wecompu'enumericallythe distribution ~ ( A E )  ofAS, thelocal minimum distance 
(avoided crossing gap size) between neighbouring energy levels of two model  system^ We 
find that p - Ae The result differs from fhaf expected ford GOE model, far which 
Wtlkinson h a s  shown that m the small Ae limit ~ ( A E )  IS constant W e  suggest that the 
discrepane) anses from paramerne  correlation^ which are known IC exist but are absent 
from the COE 

When a classically chaotic Hamiltonian H ( A ) ,  dependent on an extemal parameter A, 
IS solved quantum mechanically, the discrete spectrum €.(A) has (generically) no 
degeneracies for any value of A. There are instead near degeneracies, termed avoided 
crossings, which can be derived from degenerate perturbation theory 121. As described 
in [l], in the ( A )  neighbourhood of the near degeneracy, the two levels participating 
in the avoided crossing are effectively the two branches of a hyperbola. 

More generally, the separation &(A) between neighbouring levels E.(A) and 
E n + d A )  will have local minima. 

The subject of this paper is a numerical computation of the distribution of the sizes 
of these minima and a comparison with the theory of [ I ]  for the sizes of avoided 
crossings. The models used are time reversal invariant and without spin, so their 
Hamiltonians are real symmetric matrices. This is also the case considered in detail 
in [I]. 

The complete description of what IS to he calculated is the following. The spectrum 
{E,,(A)) is computed for the clasically chaotic Hamiltonian H ( A ) .  In general, the 
spectrum will not have a uniform local average density of states (d(E; A)) nor will the 
A dependence of IE(A)I he linear. Both of these features introduce bias into any 
statistical measure on the spectrum, so it is necessary to normalize the spectrum by 
creating the unfolded spectNm ! x G ! A ) ) ~  One defines 

and its local average ( N ( E ;  A)) satisfying 

(2) 
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The unfoided levels are then 

J Goldberg and W Schweixr 

x,(A)=(N(E.(AJ;A))=n 

for which the local average density of states is unity for all A 
The separation S between levels is 

S n ( A ) = X m + n ( A ) - & ( A )  

and a local minimum occurs for an no and A. such that 

The gap size of the local minimum is 

A E . ~ A ~ =  Sm(Ao) ( 6 )  
and from the set of all such local minima one produces the quantity of interest ~ ( A E ) ,  
the distribution of local minima. 

For small Ae, the A neighbourhood of the local minimum (avoided crossing) between 
levels n and n + 1 can essentially be described by the 2 x 2 blockof H, H,, i , j  E {n, n + I]. 
This matrix can be chosen to be diagonal for some arbitrary 1 in the neighbourhood 
and expanded to first order in A elsewhere. As shown in [ 11, within the neighbourhood 
the levels form the two branches of a hyperbola whose five shape and position 
parameters are functions of the five parameters of the first order expansion. (These 
parameters are not the same as the paramete! A which will he called the physical 
parameter where confusion might anse.) Three of these are elements of the derivative 
matrix (dHJdA)/i. Thus, in order to derive a distribution of the shape parameters of 
the avoided crossings (including A s )  the distnhution of dH/dA is required. 

In [ I ]  Wilkinson takes this distribution to be GOE for the whole matrix and similarly 
the 2 x 2 block. That is 

and 

where ( )  is an ensemble average and U is a constant. 
H itself is also assumed to be COE. While this is not exactly true for most completely 

chaotic Hamiltonians [3] it is correct for the level spacing distribution [4] which is 
what enters into *he distribution of the shape parameters [l]. 

Wilkinson shows how these distributions lead to p ( A e )  independent of AE and 
confirms the result wi.h computation on a model where both the Hamiltonian and its 
derivative are exactly members of the COE. The model is built from white noise 
generated by a random number generator and as such d-les not have an immediate 
interpretation as a physical system 

The goal of the present work is to evaluate ~ ( A E )  for a physically meaningful model. 
The major difficulty in a numerical evaluation of p is the need to work with a 

discrete set of A values. Instead of & ( A )  as a continuous function of A one has 
S.(A'+lSA), O s l s  M - l  where the spectrum of H has been evaluated for the M 
equally spaced A values between A' and A'+!M -1)sA. 



Dlsrribution of avoided crossings 2181 

Local minima are identified by the discrete version of condition ( 5 ) .  Writing S"(/) 

(9) 

I t  is necessary to ensure that the grid spacing is fine enough that all local minima are 
.kund. 

The evaluation of AE.~ . ,~  is done by quadratic intecpolation through S,,J/o-:), 
S-(/J and S,J&+ 1). This is the most general leading order form of a local minimum. 
Checks on small minima (avoided crossings) showed that using a hyperbolic interpola- 
tion did not change the interpolated gap size significantly. 

The distribution of local minima was computed for the two modei systems con- 
sidered in [ 5 ] .  The first of these is the hydrogen atom in a uniform magnetic field. In 
cylindrical coordinates its Hamiltonian is 

for S.(A'+/SA) this is 

s,$o - 1)  > S,(C) < S&+ 1). 

which corresponds to the separable subspace p* = 0. 
The spectrum and its unfolding were caicuiated according to [ 5 ]  and references 

therein for the M=65 partial spectra A ' = 2 . 5 0 X l O ~ * ,  6 A = 1 2 5 ~ 1 0 - ~  and 615SnS 
843. A total of 919 local minima were identified. 

The dots of figure 1 are the integrated distribution F(A&) 

F(bc)=joA'p( r )d t  (11) 

calculated from the 919 local minima. The inset shows the behaviour for small AE. 

This does not seem to be bome out by the data. 

the ansot: 

According to the COE model F ( h )  should grow linear!y with AE for small A&. 

The 'true' distribution mu5L go asymptotically to one for large A& which sugg-sts 

F ( A & ) =  1-e-""' (12) 

7' ' 1 " " I " ' ' 1  ' 1 

Figure 1. lniegmied dimbutton of local minimum gap sire Ae for the hydrogen n?om in 
a magnetic field. Solid liner arc m s m i  (12) with n =2,2  5.3. dashed line onralr (13) wth 
E =471. The inset shows the small AE distribution 
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where m is a free parameter. The solid lines of figure 1 are ansaiz (12) for the m values 
2, 2.5 and 3. chosen to try and globally fit the data. There is no agreement with the 
small AE values. While a small value of o( would give a linear growth that would not 
be inconsistent with the small A& values, the global form would be incorrect. 

The data points of figure 1 indicate that dFldA. vanishes at A& =O. A different 
ansaiz that reflects this is 

F ( A & ) =  1 -(pA&+l)e-pA' (13) 
where p is a free parameter. The dashed line of figure 1 is (13) with p =4.71. There 
is good agreement both globally and in the small A& region. 

I Goldberg and W Schwrizer 

Equation (13) corresponds to 

p ( p A & ) = p A s  e-pAr (14) 
which is of Poisson form for large A& but linear in A& for small AE. This is physically 
reasonabie because it means that when neighbouring levels are far apart they do not 
'interact' strongly-local minima, or the fluctuations in the levels themselves, occur 
essentially randomly. Nearby levels, on the other hand, are correlated and 'repel' each 
other. 

The second model system, also described in [ 5 ] ,  is the 'Africa' billiard whose 
boundary i s  a conformal map of the unit circle (L =e") from @ to @: 

The Hamiltonian is infinite outside the boundary and the motion is free inside it. 
Spectra and unfolding were calculated as in [SI. Here M = 214, A' = 0.14,aA = 0.0016 

and 98 s n s 198. A total of 716 local minima were identified 
Figure 2 and its inset show F ( A & )  calculated from these local minima. The solid 

line is ansafz (12) with m =2.0 and the broken line (I?) with p =4.4. The fluctuations 
are much stronger than in the first model, but the small AE limit of F does nct appear 
to be linear in AE. 

The numerical results presentrd here seem to be in disagreement with the theory 
of [I]. Two possible sources of tne discrepancy are the assumption that the local 
minima are well separated in parameter space so that they are independent, and that 
dHldA is representative of a GOE. 

. .___n 
t 1 

Figure 2. As figure 1 but far the A h a  billiard Solid line U = 2. dashed line 0 = 4.40. 
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A correlation distance for A IS provided by the parametric number variance [SI. 
For small A displacements numerical evaluations agree with the semiclassical theory 
and spectra at nearby discrete A values are correlated. For larger displacements 
correlation is lost and the parametric number variance saturates at twice E', the spectral 
number variance [41. 

The independence of the local minima can be estimated by comparing the distribu- 
tion P ( A )  of displacements A between neighbouring local minima of & ( A )  with the 
parametric correlation distance. In figure 3 P(AL the histogram, is plotted together 
with the numerical and semiclassical evaluations of the parametric number variance 
of the hydrogen plus magnetic field model. The correlation distance is approximately 
A = 1 . 6 ~  lo-' and about 40% of the separations between local minima are less than 
this distance.Figure 4 is the same as figure 3 but for the Africa billiard. The parametric 
correlation distance is about A = 0.22 and some 85% of the separations are smaller 

Figure I .  Dist"huLmn (hetogram) of parameter disianfeS between neighbouring loci1 
minima in the hydrogen atom plus magnetic field system Crosses and diamonds, quantum 
computati~n~ of the parametric number variance. Solid hnes, correspondmg empirical fits 
of the remicir5stcal theory Dotted h e .  IemiclaSs~eal theory for the cr01se6 d e c e m "  
solely from the classical dynamics The correlation distance ss approximately I 6 x 10.' 

Figure 4. As figure 3 but for the Afnea bdlmrd. The cOrrelatian distance 1s approximately 
0 22. 
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It should be remembered that each local minimum has two neighbouring minima, 
so that even in the hydrogen model the bulk of the local minima are closer than the 
correlation distance to another minimum. This suggests that the description of the 
local minima as independent hyperbolae is too crude. 

The second assumption that may not hold is (8). that dH/dA in the diagonal basis 
of H is representative of a GOE. As pointed out in 111 if dHldA is truly representative 
of a GOE then ( 8 )  will hold in any basis. 

Evaluation of (8)  involves performing the ensemble average, which corresponds to 
averaging over A. For the first model, 

The A dependence is separable and the average over A just gives a constant independent 
of the indices of the matrix element. The matrix elements of r' are products of radial 
in:egrdls and angular integrals I:* which are 

Il"=]:Tdq I : d P s i n 8 Y ~ ( 8 , ~ ) ~ ( P , ~ ) s i n ' P .  

Standard angular momentum algebra shows that this integral vanishes unless k = /, I f  2 
The fact that there are selection rules means that ( 8 )  cannot hold 

A similar stdtement cannot be made about the Africa billiard since the A dependence 
of H is not linear. The conformal form of ( 1 5 )  means that the frre motion in Africa 
can be equivalently described as motion in a circular billiard with a position dependent 
mass. Writing z=x+iy ,  ! z l s  1 as the coordinates inside the c~rcle and w as in (IS), 
the Hamiltonian inside the billidrd is 

When the derivative dH/dA is written explicitly it is easy to see that there is a 
complicated A dependence and that there are no selection rules on the matrix elements. 

An additional remark about parametric distributions can be made. The GOE model 
of [ I ]  also predicts distributions for the other two shape parameters of the hyperbolae; 
the mean and difference between the slopes of the asymptotes. However, these distribu- 
tions are strongly dependent on the choices of physical parameters There is no reason 
why the Hamiltonian cannot be described in terms of A', 11.4 or any other reparametriza- 
tion that preserves order in physical parameter space. It would seem that for the 
distribution of these other shape parameters to be invariant requires a strong (and so 
far unknown) ergodicity condition on the spectrum. Alternatively, a criterion such as 
uniformity in the positional distribution of local minima could he used to choose the 
parametrization in which statistics are to be measured. Such a criterion is implicit in 
much of the work on spectral statistics where averaging over different discrete, equally 
spaced A values is assumed to involve uncorrelated spectra [4]. 

In summary, numerical evaluation of the distribution of the sizes of the local 
minima of the spacing between levels reveals that in two physical systems the small 
gap size distribution is not constant and is most probably quadratic in the gap size. 
This is in contrast to a GOE model of the distribution which predicts that the distribution 
is constant for small gap size. 
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